
March, 2001

Advisor Answers

Preventing movement in a list

VFP 7.0/6.0/5.0/3.0

Q: I have a listbox with the MoverBars property set to .T. There are
some items in the list that I don't want users to be able to move.

(These items are blank.) Is there an event that is triggered by moving
a MoverBar? I tried to use the InteractiveChange to catch it, but it

only occurs after the move.

–Owen McPeak (via CompuServe)

A: The first thing I did to try to figure this out was to turn on Event
Tracking in the debugger to see exactly the sequence of events that

occur when the user drags a bar with the mover button. Here's the
resulting list:

form1.list1.MouseDown(1, 0, 33, 64)
form1.list1.MouseUp(1, 0, 32, 127)
form1.list1.InteractiveChange()
form1.list1.Click()
form1.list1.When()
form1.list1.Message()

Looking at the mouse position in MouseDown and MouseUp, it appears

that the key event for catching (and preventing) a move is
MouseDown. My next step was to see whether putting NODEFAULT in

the MouseDown method prevents the move; it does. That reduces the

problem to figuring out, in MouseDown, when the user is trying to
move one of the bars we don't want moved.

There are two components to that information. The first part is
determining whether the mouse is over a mover button or actual data.

It turns out that no matter what you do to the font or font size of the
list, the mover buttons stay the same size. (I also checked to be sure

that nothing in the Appearance page of the Windows Display Properties
dialog changes the size of the mover button.) Since that's the case, I

was able to figure out how wide the mover buttons are by using the
AMouseObj() function. I positioned my mouse right at the edge of the

button (you can do this in design mode or at runtime) and then from
the Command Window (which I reached using the CTRL+F2 shortcut),

I executed the function:

AMouseObj(aMResults)

After a few tests, I ascertained that the mover button is 17 pixels
wide, beginning at the left edge of the list.

The harder part is determining whether the mouse is on one of the
items that's not to be moved. In your case, that's an item containing

the empty string. Neither the Value nor the ListIndex properties of the
list is changed until later in the event sequence. In MouseDown, they

still contain the old values. In fact, in MouseDown, there's no property
that tells you which list item you're on. That leaves brute force.

The solution I found is to compute the item number, using the mouse
position and the size of an item. The FontMetric() function tells us how

tall one line is in a specified font and the leading (the space between
lines) for that font. Using this information, we can figure out how

many lines down in the list the mouse is, at this moment.

That leaves only one issue. What if the list has been scrolled down?
We need to take that into account and compute the actual position in

the list, not just the number of rows down from the top of the list.

Putting it all together, the code needed in MouseDown is surprisingly

short:

LPARAMETERS nButton, nShift, nXCoord, nYCoord
LOCAL nPosition, nRowHeight, nRow
IF nXCoord <= 17 + This.Left
 * Mouse is on mover bar, so compute row
 nPosition = nYCoord - This.Top
 nRowHeight = ;
 FontMetric(1, This.FontName, This.FontSize)+;
 FontMetric(4, This.FontName, This.FontSize)
 * Round up in computation
 nRow = CEILING(nPosition/nRowHeight) + ;
 This.TopIndex – 1
 IF EMPTY(This.List[nRow])
 * The condition for this IF can be changed to whatever
 * is appropriate for the rows that shouldn't be moved
 NODEFAULT
 ENDIF
ENDIF

It's also possible to move the items in a list using the Ctrl+UpArrow
and Ctrl+DnArrow keys. Preventing that is much simpler since we

know where the keyboard focus is. This code in KeyPress does the

trick:

LPARAMETERS nKeyCode, nShiftAltCtrl

* CTRL key and UpArrow or DnArrow
IF BITTEST(nSHiftAltCtrl, 1) AND ;
 INLIST(nKeyCode, 141, 145)
 IF EMPTY(This.List[This.ListIndex])
 * The condition for this IF can be changed
 * to whatever is appropriate for the rows
 * that shouldn't be moved
 NODEFAULT
 ENDIF
ENDIF
RETURN

This month's Professional Resource CD contains a form (KillMove.SCX)

that demonstrates the technique.

I considered one alternative approach. You can put straight lines into a

list by specifying "\-" as the bar contents. Those lines don't have
mover bars. Unfortunately, I found that VFP doesn't handle the

combination of straight lines and mover bars properly. Depending on

the font size and other considerations, either the other bars can't be
moved at all, or moving them causes visual inconsistencies. Microsoft

has acknowledged this behavior as a bug.

–Tamar

